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Lipschitz Stability of Impulsive Systems of
Differential Equations

G. K. Kulev' and D. D. Bainov'

Received August 8, 1990

Notions of Lipschitz stability of the zero solution of impulsive systems of differen-
tial equations with fixed moments of impulse effect are introduced. Sufficient
conditions for various types of uniform Lipschitz stability are obtained and the
relations between these notions are investigated. The results obtained are used
for the investigation of the uniform Lipschitz stability of the zero solution of
linear impulsive systems of differential equations.

1. INTRODUCTION

The impulsive systems of differential equations are suitable mathemati-
cal models of numerous processes and phenomena in biology, physics,
technology, etc. That is why in the recent years the mathematical-theory of
these systems has been developed by a great number of mathematicians
(Bainov and Simeonov, 1989; Lakshmikantham et al, 1989; Samoilenko
and Perestyuk, 1987; Simeonov and Bainov, 1987). For a more detailed
bibliography on this subject see Bainov and Simeonov (1989), Lakshmikan-
tham et al. (1989), and Samoilenko and Perestyuk (1987).

In the present paper the notion of Lipschitz stability for impulsive
systems of differential equations is introduced. For nonlinear systems of
differential equations without impulses this notion was introduced by
Dannan and Elaydi (1986).

For linear impulsive systems the notions of uniform Lipschitz stability
and of uniform stability by Lyapunov are equivalent (Theorem 1). For
nonlinear impulsive systems, however, the two notions are different
(Example 4). In this paper it is proved that for impulsive systems of
differential equations the notion of uniform Lipschitz stability [Definition
1{(a)] is “between” the notions of uniform stability [Definition 1(e)] and
asymptotic stability in variations [Definition 1(f)] (see Theorems 2 and 4).
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The results obtained are applied to the investigation of the uniform
Lipschitz stability of the zero solution of linear impulsive systems
(Examples 1 and 2). ’

2. PRELIMINARY NOTES AND DEFINITIONS

Let R" be the n-dimensional Euclidean space and let |x| be any norm
of the vector x € R". Consider the impulsive system

x = f(t, x), t# t;
Ax|ioy = L(x) (1)
x(to+0) =X

where f:JxXR"->R", J=[t,,®), L:R"»R", 0=t <f,<p<..., and
Ax|,—, =x(t,+0)—x(t —0).

Impulsive systems of the form (1) were described in detail in Bainov
and Simeonov (1989), Lakshmikantham et al (1989), Samoilenko and
Perestyuk (1987), and Simeonov and Bainov (1987).

Together with system (1), consider the impulsive variational systems

¥ =110}, 1# b
Ay|i=y = Ti(0)y (2)
y(to+0) = yo
and
z=f.(t, x(t; t,, X;) 2, t# 1
Az[,:,k=1;((x(tk; to, Xo)Z 3)
z(ty+0) = z,

where f, =df/ox, Il =dl,/9x, and x(t; to, x,) is the solution of system (1)
satisfying the initial condition x(#,+0; t,, xo) = x,.

The fundamental matrix ®(1, t,, x,) of system (3) is defined by the
equality (Lakshmikantham et al., 1989, Theorem 2.4.1)

d
D(1, ty, Xo) =—— (x(¢; to, Xo)), L# 4 (4)
X,
and the fundamental matrix W(z, ;) of system (2) by the equality

V(1 1) = D(1, ’°’°)=3§Z(X<’; ,0)), 1% 5)
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Henceforth we shall consider as well the linear impulsive system
X =A(t)x, t#E b

Ax|t=tk =Bix (6)
x(t0+ O) = xo
where A(?) is an n X n matrix defined in J, and B,, k=1,2,..., are constant

n X n matrices.

We shall not that if U(z, s) is the fundamental matrix of the systems
without impulses ¥ = A(t)x, then the fundamental matrix W(¢, s) of system
(6) is defined by Bainov and Simeonov, 1989; Lakshmikantham et al., 1989;
Samoilenko and Perestyuk, 1987; Simeonov and Bainov, 1987)

Ut s), ta<ssi=g
Ult, . (E+B)U(k, 5), oy <SS 4 <1<l

W= 1, tkﬁ)[fl (E+ By ) Ulten,, tkﬂ--l)] ™

j=i
X(E+ B ) U(ty, 5), o1 <S= 0 < <E=liin

where E is the unit n X n matrix.
Straightforward calculations show that

9
EW(t,s)——‘A(t)W(t,s), s<t, t#t, k=1,2,...

W(s,s)=E
Wt +0,s)=(E+B,)W(t,s), s<t, k=12,...
W(t, s)W(s, ty) = W(t, t,), fo<5<ly

‘We shall say that conditions (A) are met if the following conditions
hold:

Al 0=t <, << <t <---and limy_, o b, = 0.

A2. The function f: JxR"->R" is continuous and has a continuous
partial derivative f, in (4, &]xR", k=1,2,..., and f(1,0)=0.

A3. For any xeR" and any k=1,2,..., the functions f and f, have
finite limits as (¢, y) -~ (&, x), t> 1.

A4. The functions I,: R"»R", k=1, 2, ..., are continuously differenti-
able in R" and [(0)=0, k=1,2,....

AS5. The solution x(t; ¢y, xo) of system (1) which satisfies the initial
condition x(t,+0; t,, xo) = X, is defined in the interval (z,, ).

We shall say that condition (B) is met if the following condition holds:

B. The matrix A(¢) is piecewise continuous in J with points of discon-
tinuity of the first kind t=1,, k=1,2,..., at which it is continuous from
the left.
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We shall introduce definitions of various types of stability of the zero
solution of system (1) which are analogous to the definitions given in
Dannan and Elaydi (1986).

Definition 1. The zero solution of system (1) is said to be:
(a) Uniformly Lipschitz stable if

(AM>0)(26>0)(VxoeR", |x| < 8) (V> t,=0):
|x (15 to%0)| = M|
(b) Globally uniformly Lipschitz stable if
(AM > 0)(Vxoe R")(VE> t,=0): |x(2; to, Xo)| = M|x,|
(c) Uniformly Lipschitz stable in variations if
(AM >0)(F8>0)(Vx,eR”, |x0| < 8) (V> 1,=0):
IP(t, to, x0) | = M
(d) Globally uniformly Lipschitz stable in variations if
(AM > 0)(Vx, e R")(VE> 1,2 0): ||D(1, 1o, o) = M
(e) Uniformly stable if
(Ve>0)(38=68(g)>0)(Vt,=0)(Vxo€ R, |xo| < 8) (V> 1,):
|x(t; 1o, xo0)| < &
(f) Asymptotically stable in variations if
(AM > 0)(Vi> t,=0):

t
j U, ds=M and T (s t0)|=M

to<<t <t
In the further considerations we shall use the following notation:
(a) ||A| =supjy=1 |Ax|, where A is an arbitrary n X n matrix.

(b) S(p)={xeR":|x|<p}, p>0.
(¢) ¥={ae C[R,,R.]: a is strictly increasing in R, and a(0) =0}.

3. MAIN RESULTS

Theorem 1. Let condition (B) hold. Then the following assertions are
equivalent:

(i) The zero solution of (6) is globally uniformly Lipschitz stable in

variations.
(ii) The zero solution of (6) is uniformly Lipschitz stable in variations.
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(iii) The zero solution of (6) is globally uniformly Lipschitz stable.
(iv) The zero solution of (6) is uniformly Lipschitz stable.
(v) The zero solution of (6) is uniformly stable.

Proof. (i)=>(ii). This follows immediately from Definitions 1(c)
and 1(d).

(ii)=>(iii). Let the zero solution of (4) be uniformly Lipschitz stable
in variations. Then there exist constants M >0 and 8 > 0 such that

Wt t)|=M  for t>1=0, |x|<8 (8)

Since the fundamental matrix W of (4) does not depend on x,, then
(8) holds for any x,€R". Consequently,

[x(t; to, x0)| = | W (1, to)xo| < || W(4, t0)]|| |xo] = M]xo|

for t>1,=0 and x,€R’, i.e., (iii), holds.

(iii)=>(iv). This follows immediately from Definitions 1(a) and 1(b).

(iv)=>(v). Let (iv) hold. Then there exist constants M >0 and 6,>0
such that |x(t; 1o, Xo)| = M|x,| whenever |x,| < 8, and > t,=0.

Let ¢ >0 be given and let 8 = 8(&) =min(8,, e/ M). Then for |xo| <8
and > 1,=0 we have |x(t; to, xo)| = M|xo|= M8 < &, which shows that the
zero solution of (4) is uniformly stable.

(v)=>(i) From the uniform stability of the zero solution of (4) it follows
that || W(4, to]| = M for t > t,=0 (Samoilenko and Perestyuk, 1987, Theorem
8.1). Hence (i) holds. W

Remark 1. We shall note that Theorem 1 still holds for any system of
the form (1) whose fundamental matrix W does not depend on x,. Such
is, for instance, the linear nonhomogeneous impulsive system

x=A()x+h(1), t#E 1
Ax|,=,k = B x+ b,
x(t,+0) = x,
(see Simeonov and Bainov, 1987, p. 266).

Theorem 2. Let conditions (A) hold and let the zero solution of (1) be
uniformly Lipschitz stable. Then the zero solution of (1) is uniformly stable.

Proof. From the uniform Lipschitz stability of the zero solution of (1)
it follows that there exist constants M > 0 and 8, > 0 such that |x(t; to, Xo)| =
M x| for |xo| < 8, and > £,=0.
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Let £>0 and let §=25(s)=min(8,,e/M). Then for |xo|<8 and
t > t,= 0 the inequalities |x(¢; ,, X)| = M|x,| < M8 < ¢ are valid. Hence the
zero solution of (1) is uniformly stable. W

Theorem 3. Let condition (B) hold and let W be the fundamental
matrix of system (6). Moreover, let piecewise continuous functions k, h: J >
(0, ©) exist with points of discontinuity t=1t, k=1,2,... , at which they
are continuous from the left and such that

Jh(s)llW(t,s)udssk(t), t>1=0, t#t, k=1,2,... (9)

0

" h
k(t)exp(—j*z%ds)SN, 1> 15> 1,=0, t# 1 (10)

where 0 < N = const.
Then the zero solution of (6) is uniformly Lipschitz continuous.

Proof. Let b(t)=1/||W(t, )|, t>t,=0. Then

[J” h(s)b(s) ds] W(t, t,) = Jl W(t, s) W(s, to)h(s)b(s) ds

0 0

Hence

1 t 1
MI h(s)b(s) dsSJ | W, s)||h(s) ds < k(t) (11)
fo fo
where we have used (9).
Set B(t)=j';0h(s)b(s) ds. Then B(t) is continuous for t=t,=0 and
B'(t)=h(t)b(t) for t# t,, k=1,2,.... Moreover, from (11) it follows that
h(t)B(t)=<k(t)B'(t), i.e.,

h(t
B’(t)z—(—-lB(t), t>t,=0, t#t, k=1,2,... (12)

k(1)

Multiply both sides of (12) by exp{—['. [h(s)/k(s)] ds} for some t*> ¢,
and obtain

d " h(s) )] N
dt[B(t)exp( I,*k(s)ds =0, t=t* t#t, k=1,2,...
Hence

B(1) exp{—‘r [h{(s)/k(s)] ds} = B(t*)
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from which, using (11), we obtain

k(t)b(t) = B(t) = B(t*) exp{'[t [h(s)/ k(s)] ds}

Then

k h
Wt 1) =B‘(1;5’<_ B((ttﬂ?) exP<_ J,* ;C—E;:—; ds)

Let M = N/B(r*). Then, applying (10), we obtain that || W(z, to)|| < M
for t > t, =0, which means that the zero solution of (6) is globally uniformly
Lipschitz stable in variations. From Theorem 1 it follows that the zero
solution of (6) is uniformly Lipschitz stable. W

Corollary 1. Let conditions (A) hold and let the zero solution of (1)
be asymptotically stable in variations. Then the zero solution of (2) is
uniformly Lipschitz stable.

Proof. From the asymptotic stability in variations of the zero solution
of (1) it follows that inequalities (9) and (10) of Theorem 3 hold with
h(t)=1, k(t)=M, W(t t,)=Y(t, 1), and N =M. Then the assertion of
Corollary 1 follows from Theorem 3. W

Corollary 2. Let condition (B) hold and let the fundamental matrix W
of the linear system (6) satisfy the inequality

Ji[W(t,s)]|dsSt for t>1,=0

Then there exists a constant M >0 such that |W(s t)|<M for
t>t,=0.

Theorem 4. Let conditions (A) hold and let the zero solution of (1) be
asymptotically stable in variations. Then the zero solution of (1) is uniformly
Lipschitz stable.

Proof. Let ¥ be the fundamental matrix of (2). From Corollary 1 it
follows that | ¥(s, )| = K, for > t,=0, where 0< K, =const. From the
condition of Theorem 4 it follows that

J (s, s)| ds= K, and Y (L 6 +0)) <= K,
o te<<tp <t
for t> t,=0, where 0 < K, = const.

Let K =max(K;, K,). Since f(¢,0)=0and I,(0)=0,k=1,2,..., then
for £<1/2K there exists >0 such that f(¢, x)=f.(¢,0)x+ h(¢t, x) and
I(x) = I'.(0)x + h(x) for |x|< 8, where |h(t, x)| < e|x| and |h (x)| < g|x|.
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Applying the variation of parameter formula (Simeonov and Bainov,
1987, p. 266), we obtain

|x(2; to, Xo)| = | ¥ (1, to+0)xo+ J W(t, s)h(s, x(s; to, Xo)) ds

fo

+ Y Wt 0 (x(t; 1o, X0))

fo< by <t

=190 6O b+ [ 10 LG, x5 10 %00 ds

+ X Y b+ 0 [P (x(te; 1o, X0))|

to<ty <t

SK|x0‘+E J‘ ”\I’(ta S)“ |x(s; th xO)I dS

fo

+e Y W, 4 +0)| [x(t; to, Xo)]

to<<ti <<t

= K|xo|+2eK sup |x(s; to, Xo)|

tg<<s=t

Hence

lx(t; to,Xo)lS |x0|=M|x0|, t>t020

1-2eK
This completes the proof of Theorem 4. W

Theorem 5. Let the following conditions be fulfilled:
1. Conditions (A) hold.
2. ge C[JxR,,R,] and g(t,0)=0.
3. For (t,x)e Jx S(p) and for any h >0 small enough the following
inequality is valid:
x+ hf (1, x)| = [x[+ hg(s, [x]) + () (13)

where €(h)/h->0 as h->0.
4. For x€ S(p) and for any k=1, 2, ... the inequalities

|x + I(x)| = G (|x)) (14)

are valid, where G;: [0, po) >0, p) and G, € X.
5. The zero solution of the scalar impulsive differential equation

u=g(t,u), t# 1
u(t, +0) = G(u(t)) (15)
u(ty+0)=uy=0

is uniformly Lipschitz stable (globally uniformly Lipschitz stable).
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Then the zero solution of system (1) is uniformly Lipschitz stable
(globally uniformly Lipschitz stable).

Proof. Let p* =min(p, py). From condition 5 of Theorem 5 it follows
that there exist constants M >0 and 8§ >0 (M8 < p*) such that

u(t, to, UQ)SMHO fOI' 0= u0<6, t>t020 (16)

where u(t; to, uo) is any solution of (15) for which u(ty+0; to, 4o) = Uo-

We shall prove that |x(t; fo, Xo)| =< M|x,| for |xo/<& and t>t,=0.
Suppose that this is not true. Then there exists a solution x(#) = x(; t,, Xo)
of (1), |xo| <8, and t* € (¥, t,+,] for some positive integer k such that

x(¢*)|>Ml|x,] and |x(t)|=Mlx,| for t<t=t
From (14) it follows that
[x(t+0)| = |x(8) + L(x(t))| = Ge(|x(8)])
< G (M|x,|) < G (M8) = G (p*)<p
Hence there exists ¢°, t, < t°<t*, such that
Mlx|<|x()<p and  |x(t)|<p, to<t=t° 17

Set m(t) =|x(1)| and uy=|x,|. From (13) it follows that for ¢ € (¢, t°],
t#t,j=1,2,...,k the following inequalities hold:

(1) =lim(1/ W){[x(t-+ b)] = x(1)]
sLi_r)ré(l/h){Ix(H- )|+ hg(t, |x()])+e(h) = |x(t) + hf (¢, x(1))]]
= g(1 [x(D)) +lim e(h)/h-+1im [(1/ WEx(t+ h) = x(1)] = £ x(0)

=g(1, [x(1)]) = g(1, m(1))
From (14) we obtain that for j=1,2, ..., k the inequalities
m(,+0) = |x(5;+0)| = [x(5) + L(x(£))| = G(|x(5)))
hold, hence
m(t+0)=G|m(t)), j=1,2,...,k
Moreover,
m(te+0) =|x(t,+0)| =|xo| = uo

Applying the comparison theorem (Lakshmikantham er al, 1989,
Theorem 1.4.3), we obtain

Ix(D]=m()=u(t; to, up),  to<t=t° (18)
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From (16)-(18) it follows that
Mxo| <|x(£%)| = m(1°) = u(t° 1o, uo) = Muo = M|x,|

The contradiction obtained shows that |x(t; t,, Xo)| < M|x,| for |xo| < &
and t>t,=0.
Theorem 5 is proved. W

Theorem 6. Let the following conditions be fulfilled:
1. Conditions 1, 2, 4, and 5 of Theorem 5 hold.
2. For (t, x) e J x S(p) the inequality

[x, f(t, %)), = g(1, |x)) (19)
is valid, where
[x, y]e =limsup (1/W)[|x+hy[-|x[]l,  xyeR"
h—=0
Then the zero solution of system (1) is uniformly Lipschitz stable (globally
uniformly Lipschitz stable).

Proof. Let p* =min(p, p,). From condition 5 of Theorem 5 it follows
that there exist constants M >0 and § >0 (M8 < p*) such that

u(t; ty, up) < Mu, for 0=uy<é and t>1t,=0

We shall prove that |x(f; t,, Xo)| = M|x,| for |x,|<8 and t>1t,=0.
Suppose that this is not true and as in the proof of Theorem 5 we find a
solution x(t) = x(1; o, Xo), |xo| < 8, of system (1) and t°€ (#, t..,] for some
positive integer k such that

Mlx|<|x(t%)<p and  |x(¥)|<p, tfo<t=1t°

Set m(1) =|x(t)] and uy = |x,| and using (19) obtain that for t € (,, t°], t # ¢,
j=12,..., k, the following inequalities hold:

Dm(1)= lir;rlj)yp(l/h)[m(t+ h) —m(t)]
=tim sup(1/ m){x(t+ k)| =[x(0)]

=lim sup I(1/B)[x(t+h) = x(0)] = £, x(1))|

+1im sup(1/m)[lx (1) + B (s, x ()]~ |x(1)]

=[x(0), f(1, x(1)) ]+ = g(1, m(1))
Later the proof of Theorem 6 is completed as the proof of Theorem 5.
Theorem 7. Let the following conditions be fulfilled:
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1. Conditions (A) hold.
2. The function g is continuous, nondecreasing, positive, and sub-
multiplicative in I = (0, o) and

g(Au)= u(A)g(u) for A>0,u>0

where w(A)>0 for A>0.
3. For (1, x)e J xR" the following inequality holds:

Lf(t, x)|=m(1)g(|x])

where the function m(t) is continuous and nonnegative in J.
4. For xeR" and for any k=1, 2, ... the inequalities

[T ()] = Brlx|

hold, where 8,, k=1,2,..., are nonnegative constants.
5. We have

- g([xo|) 1+ By
G l[G( 1+ ) —————m(s)ds | <
e<£I<oo ( ﬂk) ' o! 0 s<g<oo M(l +3k)
for any x,€R" and any 6= t,=0, where
Yod.
G(u)———J‘ —S—, uza>0
s)

and G~'is the inverse to G.

6. G(0)=c0.

Then the zero solution of system (1) is globally uniformly Lipschitz
stable.

~ Proof. Since

t
x(t9 thxO):xo+J f(sa x(s; t09x0)) dS+ Z Ik(x(tk; to,Xo))
to to<<ty <1
then, using conditions 2-4 of Theorem 7, we obtain the inequalities
[x(#; 10, %o)|
lxol

s]+Jtm(S) g(l ol x(s; tO,xo)l) s+ S B Ix(t; to, Xo)|

}xO‘ ) 0‘ o<t <t ‘xol

SI+J. g(’ 0]) m(s)g (]X(SQto, xo)l) s+ Y B Ix(tk;tm xo)!

} 0! Ixo' fo<t <t lx()]
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Then from the impulsive integral inequality (Lakshmikantham et al.,
1989, Theorem 1.5.5) it follows that

x(z; to,xo)lsxolc—l[G( Il (1+Bk)>

o<ty <t

From condition 5 of Theorem 7 it follows that |x(¢; ¢, Xo)| < M|x,| for
any xo€R" and for 1> 1,=0.
This completes the proof of Theorem 7. W

Theorem 8. Let the following conditions be fulfilled:

1. Conditions (A) hold.

2. The function g is continuous, nondecreasing, positive, and submulti-
plicative in I = (0, ).

3. Conditions 3 and 4 of Theorem 7 hold.

4. For any k=1,2,..., te(t, ], and x,eR" the following
inequalities hold:
G;l(g—(‘x—oD J m(s) ds) =M
Ixol tx

where 0 < M = const,

Gk(u) = J.u -—di,
o« 8(s

Y ds
G (u)=J —,
’ . g(s)
and G¢'is the inverse to Gi.
5. G(x0)=0c0, k=0,1,2,....
Then the zero solution of system (1) is globally uniformly Lipschitz

stable.
Proof. As in the proof of Theorem 7, we obtain the inequality

Ix(t; 1, 3‘0)151_{_‘[r g(|xo)) m(s)g(lx(S; fo, xo)l> ds

Iy

ck=(1+Bk)G;i1(J m(s) ds), k=1,2,...

fe—y

u=c¢>0

|x0| 1 'xol |xol
+ Y x(#; to, xo)" t> 1,20
fp<ti <t |x0|

Applying the impulsive integral inequality (Samoilenko and Perestyuk,
1987, Lemma 16.1), we obtain

Ix(t, to,xo)|S|x0|GZ1<§~?':—([|ljtm(s) dS), te(tks tk+l]s k=1529
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Then from condition 4 of Theorem 8 it follows that |x(¢; o, Xo)| < M|x,| for
x,€R" and > t,=0. '

Theorem 8 is proved. M

Theorem 9. Let conditions (A) hold and, moreover, for § =1,=0 and
x0] < & let

J A, ty, xp) dt <0 and I Ag< (20)
6" G<f <0
where A{t, £, X,) is the greatest eigenvalue of the matrix
%[f)‘((tﬁ x(t; tO, xO))+f);r(t7 x(t, t09 xO))]
and A, k=1,2,..., are the greatest eigenvalues of the matrices [E +
T (O)LE + I ,(0)]".
Then the zero solution of system (1) is uniformly Lipschitz stable.

Proof. From Samoilenko and Perestyuk (1987, Theorem 9.1) it follows
that

[®(2, 1o, x0)| = [ I Ak] eXpl:J" A(s, to, xo) ds}

where
5}
q)(ty thx()): (x(t; thx()))’ t¢tk9 k=1,2:
dXg

is the fundamental matrix of system (3).
Then from conditions (20) we obtain that | ®(y, t,, xo)|| = M for t > t,=
0 and |x,| < 8, which completes the proof of Theorem 9. W

Remark 2. In the case when in R" the Euclidean norm |x| of the vectors
xeR" is used, conditions (20) can be written down in the form

j p(fils, x(s; fo, %)) ds <o and [ [|E+I0)] <o
6 < 1 <O
where

u(A) = lim (1/ W) E+hA] ~1]

is Lozinskii’s “logarithmic norm” of the n X n matrix A.

Theorem 10. Let the following conditions be fulfilled:

1. Conditions (A) hold.

2. The zero solution of system (1) is uniformly Lipschitz stable.

3. |®(1, 5, 2)g(s, z)| = y(s)|z| for t=5>t,=0, zeR", where ® is the
fundamental matrix of (3) and the function g: J XR" -»R" satisfies condi-
tions A2 and A3.
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4. |P.()|=BilylforyeR" k=1,2,...,where P.: R" > R" satisfy con-
dition A4 and B, =0, k=1,2,..., are constants.

5. 1@t b, y+ L(p)+sP(y)|| =y for t>1,=0, yeR", 0=s=1, and
k=1,2,..., where a, =0, k=1, 2,..., are constants.

6. [ (1) dt<coand I[,_, ., (1+aBi) <00 for 6> £,=0.

Then the zero solution of the perturbed impulsive system

y=f(t,y)+g(ty), 17 b
Ay|t=tk = Ik(y)+Pk(}’)

is uniformly Lipschitz stable.

(21)

Proof. Using Alexeyev’s variation of parameter nonlinear formula for
impulsive differential equations (Simeonov and Bainov, 1987, p. 268), for
the solution y(t) = y(t; ty, x,) of (21) we obtain

t

y(t; 19, %o) = X(1; £, Xo) + J @(1, 5, y(5))g(s, y(s)) ds

to

+ X J’q)(t,lk,Y(tk)"'Ik(J’(tk))

to<tp<it JO

+ 5P (y(t))) ds- Pe(y(t)) (22)

From condition 2 of Theorem 10 it follows that there exist constants
a >0 and & >0 such that

|x(t; to, xo)| = a|xg]  for t>#=0 and |xo<é (23)

From conditions 3-5 of Theorem 10 and from (22) and (23) it follows
that

t
ly(0)|=|y(z; to,xo)lsaixOHJ y($)y(s)ds+ ¥ aBily(n)l
to to<tp <t
from which, using the impulsive integral inequality (Samoilenko and
Perestyuk, 1987, Lemma 2.1), we obtain
t

(6 1o, Xo|=alxe| T (1+euB) eXP[J y(s) ds]

fo<tp<t 1o
Then from condition 6 of Theorem 10 it follows that |y(t; t,, Xo)| = a|x,|
for |x,|< & and t>t,=0.
Theorem 10 is proved. B

Corollary 3. Let the following conditions be fulfilled:
1. Condition (B) holds.
2. The zero solution of system (6) is uniformly Lipschitz stable.
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3. The function g: J xR" > R" satisfies conditions A2 and A3 and
lgt, »)|=vy(Dly] for yeR" t>t=0

where {3 y(s) ds <o for 6> t,=0.
4, The functions P,: R" > R" satisfy condition A4 and |P.(y)|=<B.|y],
where 0= g, =const and [],., ., (1+aB,) <co for §>1,=0 and a>0.
Then the zero solution of the system

y=A()y+g(t,y), t# b
Ayli=y, = Biy + Pu(y)

is uniformly Lipschitz stable.
In the subsequent theorems some relations among the notions of
Lipschitz stability introduced by Definition 1 are considered.

Theorem 11. Let conditions (A) hold and let the zero solution of
system (1) be uniformly Lipschitz stable in variations. Then the zero solution
of (1) is uniformly Lipschitz stable.

Proof. From Lakshmikantham et al. (1989, Theorem 2.4.1) it follows
that for t# t,, k=1,2,..., we have

0
P x(t; to, s%0) = D(1, 1y, X0) %o (24)

where @ is the fundamental matrix of system (3).
Integrating (24) from 0 to 1, we obtain

£

x(t; ty, xo) = U (1, ty, 5x5) ds]xo, 1>t,=0, t#t, k=1,2,...
0
From the condition of Theorem 11 it follows that there exist constants
M >0 and 8> 0 such that
|D(t, to, yo)|=M  for |y|]<& and t>1,=0

and since |sx,| = s|xo| <|xo|, thenfor 1> 1,=0,t # t,, k=1,2,... ,and |x,| < &
we have ||®(1, 1,, sxo)|| = M.
Hence

[x(t; t5, xo0)| = [Jl (1, to, sx0) | ds]IXOISMleI

for 1>1,20, t#¢t, k=1,2,..., and |x,| < 8.
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From the continuity from the left of x(t; t,, x;) at the points #,, k=
1,2,..., it follows that |x(t; to, Xo)|=< M|x,|, k=1,2,..., with which
Theorem 11 is proved. B

Theorem 12. Let conditions (A) hold and let the zero solution of (1)
be uniformly Lipschitz stable. Then the zero solution of (2) is uniformly
Lipschitz stable.

Proof. Since the zero solution of (1) is uniformly Lipschitz stable, then
there exist constants M >0 and 6> 0 such that |x(¢; to, x0)| = M|x,| for
t>t,=0 and |x,| < 8.

Let x0=(x019' .. ,x0j~lax0j9 x0j+1: e 3x0n)3 .]= 1’29' AN and |x0|S
h <. Since x(t;t,,0)=0 for t>t,=0, t # t,, k=1,2,..., we have

d

Hm(1/h)[x(t; to, X0) — x(1; to,O)],

(x(t9 th 0))’ =
=lim M|x|/h=M

Hence

0
I =190 0,00 = 2 (x5 1, 20 | = 0
0

fort>1,=0,t#t,,k=1,2,....From the continuity from the left of (¢, t,)
at the points t,, k=1,2,..., it follows that [|[¥(%, t)|<=M, k=1,2,....

Hence the zero solution of (2) is uniformly stable (Samoilenko and
Perestyuk, 1987, Theorem 8.1). From Theorem 1 it follows that the zero
solution of (2) is uniformly Lipschitz stable. W

Theorem 13. Let the following conditions hold:

1. Conditions (A) are satisfied.

2. The zero solution of (2) is uniformly Lipschitz stable.
3. For 8> t,=0 and |x,| <8 (8> 0)

J [l £(s, x(s5 to, Xo)) — £ (s, 0)|| ds <00 (25)
8
I A+ K| I(x(t; £, x0)) = Ik(0)[|) <0,  K>0 (26)
8 <t <o
Then the zero solution of (1) is uniformly Lipschitz stable in variations.

Proof. Let z(t)=2z(t; to, o) be a solution of system (3) for which
z(ty+0) = z,. Then system (3) can be written down in the form

Z-_—f;(l, 0)Z+[f;c(ta x(t; tOsxo))_f;c(t’ 0)]Z, t¢tk
Az|ioq = L(0) 2+ [ I(x(t; Lo, X0)) — [1(0)]z
z{(t,+0) =12z,
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From the variation of parameters formula for impulsive differential
equations (Simeonov and Bainov, 1987, p. 266) we obtain

z{t; ty, 20) ="V(t, t,+0)zq
+J' \P(t’ s)[.ﬁt(sa x(s; th xO)) ~.f;c(sa O)JZ(S’ to, ZO) dS
+ Y WL O T(x(ts to, X0)) — Ii(0)1z(t 5 to, 20)  (27)

From condition 2 of Theorem 13 and from Theorem 1 it follows that there
exists a constant K > 0 such that

[P(s, t)|=K  for t>1,=0 (28)
From (27) and (28) it follows that

\z(t; 1, Zo)l

= K'Zo"!’K j' ”fx(sa x(s; to, X)) — fi(s, 0} |Z(S; lo, Zo)l ds

Iy

+K Z ”I;c(x(tk; to, xo))—IL(O)H ]Z(tk; to, Zo)l

tg<ty <t

Applying the impulsive integral inequality (Samoilenko and Perestyuk,
1987, Lemma 2.1), we obtain
|2(t; 1, 2|

=Klzo| TI [1+K[Ii(x(5; to, %)) = I1(0)]

to<<ty <t

X eXP[K J [ £(s, x(s5 t0, X0)) —f(s, 0) dS]

Then from conditions (25) and (26) it follows that |z(t; to, zo| < M|z,
for t>t,=0.
Hence
|®(t, to, x0) || = sup (1, to,xo)zol—'s?p |z(t; to, zo)l<ls1|1p M|zo|=M
zo =1 Zo|=1 zp|=1
Consequently, the zero solution of system (1) is uniformly Lipschitz
stable in variations. W

From Theorems 12 and 13 we obtain the following corollary.

Corollary 4. Let conditions 1 and 3 of Theorem 13 hold and let the
zero solution of system (1) be uniformly Lipschitz stable. Then the zero
solution of (1) is uniformly Lipschitz stable in variations.
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From Theorems 11 and 13 we obtain the following corollary.

Corollary 5. If the conditions of Theorem 13 hold, ther the zero solution
of system (1) is uniformly Lipschitz stable.

4. EXAMPLES
We shall illustrate the results obtained by some examples.
Example 1. Consider the linear impulsive system
X=Ax, t#1, Ax|,=,k=ka; x(t,+0) = x, (29)

where Aand B, k=1, 2, ..., are constant n X n matrices. By straightforward
calculations we establish that [x, Ax], < u(A)|x|.

Let |E+Bi||=d;, k=1,2,..., and let condition Al hold. Consider
the scalar impulsive differential equation

i=pu(Au, t#1t; Aul,o, =(d—1u; u(to+0)=u,=0 (30)
whose solution is
u(t; to, up) = uo( 11 dk) exp[u(A)(t—1,)]
to<fi <t

If we suppose that [[,_, d; is convergent and u(A) =<0, then the zero
solution of (30) is globally uniformly Lipschitz stable. Then from Theorem
6 it follows that the zero solution of system (29) is globally Lipschitz stable.

Example 2. Consider the linear impulsive system (6) for which condi-
tions Al and (B) hold. If, moreover, the following conditions hold:

(a) lim sup[J u(A(s)) ds} < o0
t—>cC fo
(b) ”E+Bk’|5dk, k=1,2,...
() [l di<oo
k=1
then the zero solution of the scalar impulsive differential equation
u=u(A())u, t#t; Au|,=,k=(dk—l)u; u(ty+0)=uy=0

is globally uniformly Lipschitz stable. Then from Theorem 6 it follows that
the zero solution of system (6) is globally uniformly Lipschitz stable.

Example 3. Consider the impulsive system of differential equations (1).
Let conditions (A) hold as well as the following conditions:
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(a) [x, f(t, x)}, < p(t)F(|x]) for (1, x)e J x S(p), where pe C[R, ,R,]
and Fe¥ (R, =[0, )).

(b) |x+ L(x)|= G(|x]) for xe S(p), k=1,2,..., where G,: [0, po) >
[0,p) and G e ¥, k=1,2,....

{c) For any o< (0, py] the following inequality holds:

[ G (o) d
Jp(s)ds+J <0, k=1,2,...

. F(s) 7
Then the zero solution of the scalar impulsive differential equation
u=p(t)F(u), t#1u; Aul, oy = G (u(t)) —u(t); u(to+0)=u=0

is uniformly Lipschitz stable. From Theorem 6 it follows that the zero
solution of system (1) is uniformly Lipschitz stable.
Example 4. Consider the impulsive system
2n-+1

i=y, y=-x"" 1 Ax|i—y = agx; Aylic=ay  (31)

where n =1 is aninteger arid Hle {1+ ay ) <oo. The solution (x(t; ty, Xo, Vo),
y(t; to, X0, o)) of system (31) satisfies the relation

X (D) +y =[G (A D+pE] 1T (e

ty< ty <t

Hence the zero solution of system (31) is uniformly stable.
Consider the variational system of (31) corresponding to its zero
solution:

u=v, =0, (71, Au|,=,k:aku; Av[,:,k——-aku (32)
whose solution is
u(t; to, o, vo) = [ I1 (1+ak)][uo+ vo(t —19)]
tg<Tty <t

o(t; to, U, Vo) =0y [I (T+au)

to<tp <t

Hence the zero solution of system (32) is unstable. From Theorem 12
it follows that the zero solution of (31) is not uniformly Lipschitz stable.

Example 5. Consider the impulsive system
X=n(t)y+m()x(x*+y?), t# 1,
y=—n(t)x+m(t)y(x’+y?), t# 1

Axl,:,k =@, X, Ay|,=,k=aky (33)

where the functions m, n: R, >R are piecewise continuous with points of
discontinuity of the first kind ¢, at which they are continuous from the left.
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A straightforward verification yields that if m(£)>0, {3 m(t) dt =0,
t—t_1=0>0(k=1,2,...) and [],_, (1+ &) <, then the zero solution
of system (33) is unstable.

Consider the variational system of (33) corresponding to its zero
solution:

u=n(t)v, v=-—-n(t)u, t#E 1
Aul,—,, = au, Av|ny, = oy (34)
It is clear that
p(t; o, po)=po 1l (1+a)

fo<ty <t

where
2 2 2 2 2
p(t; to, po) =u (1 to, Uy, Vo) T V(85 to, Uo, Vo),  Po=1upt+vp

Hence the zero solution of system (34) is uniformly Lipschitz stable.
This shows that Theorem 12 is not invertible.

ACKNOWLEDGMENT

The present investigation was supported by the Bulgarian Ministry of
Culture, Science and Education of the People’s Republic of Bulgaria under
Grant 61.

REFERENCES

Bainov, D. D., and Simeonov, P. S. (1989). Systems with Impulse Effect: Stability, Theory and
Applications, Ellis Horwood Limited, Chichester, England.

Dannan, F. M., and Elaydi, S. (1968). Journal of Mathematical Analysis and Applications,
113(2), 562-577.

Lakshmikantham, V., Bainov, D. D., and Simeonov, P. S. (1989). Theory of Impulsive Differential
Equations, World Scientific, Singapore.

Samoilenko, A. M., and Perestyuk, N. A. (1987). Differential Equations with Impulse Effect,
Viga Skola, Kiev.

Simeonov, P. S., and Bainov, D. D. (1987). Differentiability of solutions of systems with
impulse effect with respect to initial data and parameter, Bulletin of the Institute of
Mathematics, Academia Sinica, 15(2), 251-269.



