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Notions of Lipschitz stability of the zero solution of impulsive systems of differen- 
tial equations with fixed moments of impulse effect are introduced. Sufficient 
conditions for various types of uniform Lipschitz stability are obtained and the 
relations between these notions are investigated. The results obtained are used 
for the investigation of the uniform Lipschitz stability of the zero solution of 
linear impulsive systems of differential equations. 

1. I N T R O D U C T I O N  

The impulsive systems of differential equations are suitable mathemati-  
cal models of  numerous processes and phenomena  in biology, physics~ 
technology, etc. That is why in the recent years the mathemat ica l theory  of  
these systems has been developed by a great number  of  mathematicians 
(Bainov and Simeonov, 1989; Lakshrnikantham et al., 1989; Samoilenko 
and Perestyuk, 1987; Simeonov and Bainov, 1987). For a more detailed 
bibliography on this subject see Bainov and Simeonov (1989), Lakshmikan- 
tham et al. (1989), and Samoilenko and Perestyuk (1987). 

In the present paper  the notion of  Lipschitz stability for impulsive 
systems of differential equations is introduced. For nonlinear systems of 
differential equations without impulses this notion was introduced by 
Dannan and Elaydi (1986). 

For linear impulsive systems the notions of  uniform Lipschitz stability 
and of uniform stability by Lyapunov are equivalent (Theorem 1). For 
nonlinear impulsive systems, however, the two notions are different 
(Example 4). In this paper  it is proved that for impulsive systems of  
differential equations the notion of uniform Lipschitz stability [Definition 
l (a)]  is "be tween"  the notions of  uniform stability [Definition l(e)]  and 
asymptotic stability in variations [Definition l(f)]  (see Theorems 2 and 4). 
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The results obtained are applied to the investigation of  the uniform 
Lipschitz stability of the zero solution of linear impulsive systems 
(Examples 1 and 2). 

2. PRELIMINARY NOTES AND DEFINITIONS 

Let R" be the n-dimensional Euclidean space and let I x] be any norm 
of the vector x ~ R". Consider the impulsive system 

:~=f( t ,x) ,  t ~ t k  

axl,=,~ = tk(x) (1) 

X(to+ O) = Xo 

where f : J x R n ~ R " ,  J = [ t o ,  OO), l k : R " o ~ " ,  O<--to<ta<t2<.. . ,  and 
Ax[,=, k =X(tk+O)--X(tk--O). 

Impulsive systems of  the form (1) were described in detail in Bainov 
and Simeonov (1989), Lakshmikantham et al. (1989), Samoilenko and 
Perestyuk (1987), and Simeonov and Bainov (1987). 

Together with system (1), consider the impulsive variational systems 

=f~(t, O)y, t ~ tk 

Ayl,=,~ = I'k(O)y (2) 

y(to + 0) = Yo 

and 

i = fx( t, x( t; to, Xo)Z, t r tk 

AZ[t=tk = I'k(X(tk; to, Xo)Z (3) 

Z( to+O) = Zo 

where fx = Of/Ox, I'k =OIk/OX, and x(t;  to, Xo) is the solution of system (1) 
satisfying the initial condition X(to+ 0; to, Xo)= Xo. 

The fundamental matrix ~P(t, to, Xo) of  system (3) is defined by the 
equality (Lakshmikantham et al., 1989, Theorem 2.4.1) 

dp(t, to, Xo) =~Xo (x(t;  to, Xo)), t ~ tk (4) 

and the fundamental matrix ~( t ,  to) of system (2) by the equality 

�9 (t, to)--~(t ,  to, O)=O-~-(x(t; to,0)), t ~  tk (5) 
0Xo 
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Henceforth we shall consider as well the linear impulsive system 

S: = A(t)x ,  t ~ tk 

AxI,=, k = BkX (6) 

X(to+O) = Xo 

where A(t)  is an n • n matrix defined in J, and Bk, k = 1, 2 . . . .  , are constant 
n x n matrices. 

We shall not that if U(t, s) is the fundamental  matrix of  the systems 
without impulses 2 = A(t)x ,  then the fundamental  matrix W(t, s) of system 
(6) is defined by Bainov and Simeonov, 1989; Lakshmikantham et al., 1989; 
Samoilenko and Perestyuk, 1987; Simeonov and Bainov, 1987) 

"U(t ,s) ,  tk_l<S<--t<-tk 

U(t, t k ) (E+Bk)U(tk ,  s), tk_~<s<--tk<t<-tk+~ 

W ( t , s ) =  U(t, tk+~) (E+Bk+j)U(tk+j, tk+j_~) 
j="  

•  s) , tk-a<X<~tk<tk+i<t<-tk+i+l 

where E is the unit n x n matrix. 
Straightforward calculations show that 

0 
- -  W ( t , s ) = A ( t ) W ( t , s ) ,  s < t ,  
Ot 

W(s,  s) = E 

t r  k = l , 2 , . . .  

W ( t k + O , s ) = ( E + B k ) W ( t k ,  s), S<tk ,  k = l , 2 , . . .  

W(t, s)W(s,  to) = W(t, to), to<S<to  

We shall say that conditions (A) are met if the following conditions 
hold: 

A1. 0-< to < t~ < t 2 < "  �9 �9 < f k  < " " " and limk_~ t k = o 0 .  

A2. The function f :  J • Nn~  Nn is continuous and has a continuous 
partial derivative f~ in (tk-1, tk] XR", k = 1, 2 , . . . ,  and f ( t ,  O) =--0. 

A3. For any x c R" and any k = 1, 2 , . . . ,  the functions f and fx have 
finite limits as (t ,y)->(tk, x), t>  tk. 

A4. The functions Ik: ~"  -~ R", k = 1, 2 , . . . ,  are continuously differenti- 
able in R" and Ik(0) = 0, k = 1, 2 , . . . .  

A5. The solution x(t;  to, Xo) of system (1) which satisfies the initial 
condition X(to+ 0; to, Xo)= Xo is defined in the interval (to, 0o). 

We shall say that condition (B) is met if the following condition holds: 
B. The matrix A(t)  is piecewise continuous in J with points of  discon- 

tinuity of  the first kind t = tk, k = 1, 2, . . . ,  at which it is continuous from 
the left. 
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We shall introduce definitions of various types of stability of the zero 
solution of system (1) which are analogous to the definitions given in 
Dannan and Elaydi (1986). 

Definition 1. The zero solution of system (1) is said to be: 
(a) Uniformly Lipschitz stable if 

(3M>O)(36>O)(Vxo~R", [xl < ~)(Vt > to-->O): 

Ix(t; toXo)l--- Mlxol 
(b) Globally uniformly Lipschitz stable if 

(=IM > 0)(VXo ~ R" ) (Vt  > to--- 0): Ix( t ;  to, xo)l-- Mlxol 
(c) Uniformly Lipschitz stable in variations if 

( 3 M  > 0)(3~ > 0)(Vxo ~ R", Ixol < ~)(Vt > to>- 0): 

l l~(t, to, xo)ll <- M 

(d) Globally uniformly Lipschitz stable in variations if 

( = I M >  0)(VXo c R") (Vt  > to -> 0): Ilm(t, to, xo)ll-< M 

(e) Uniformly stable if 

( r e  > 0)(=1~ = 6(e) > 0)(Vto-> 0)(Vxo ~ ~", Ixol < ~ ) (v t  > to): 

IX(t; to, xo)l < 

(f) Asymptotically stable in variations if 

( 3 M >  O)(Vt> to->O): 

I ' l l ' ~ ( t , s ) l l d s < - M  and Y, Ilqt(t, tk+O)ll<-M 
t o t o < t k < t  

In the further considerations we shall use the following notation: 
(a) IIAII = suplxl_<l IAxl, where A is an arbitrary n x n matrix. 
(b) S ( p ) = { x 6 R " :  lxl<p}, p>O. 
(c) yf = {a s c[•+,  •+]: a is strictly increasing in R+ and a(O) = 0}. 

3. MAIN RESULTS 

Theorem 1. Let condition (B) hold. Then the following assertions are 
equivalent: 

(i) The zero solution of (6) is globally uniformly Lipschitz stable in 
variations. 

(ii) The zero solution of (6) is uniformly Lipschitz stable in variations. 
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(iii) The zero solution of (6) is globally uniformly Lipschitz stable. 
(iv) The zero solution of (6) is uniformly Lipschitz stable. 
(v) The zero solution of (6) is uniformly stable. 

Proof ( i )~( i i ) .  This follows immediately from Definitions l(c) 
and l(d). 

( i i )~( i i i ) .  Let the zero solution of (4) be uniformly Lipschitz stable 
in variations. Then there exist constants M > 0 and 6 > 0 such that 

][W(t, to)l]~M for t>to-->0, [Xol<6 (8) 

Since the fundamental matrix W of (4) does not depend on Xo, then 
(8) holds for any Xo ~ R n. Consequently, 

Ix(t; to, Xo)[ = I W(t, to)Xo[---I[ W(t, to)IF Ixol ~ Mlxo] 

for t >  to->O and Xo~E", i.e., (iii), holds. 
( i i i )~( iv) .  This follows immediately from Definitions l(a) and l(b). 
( iv )~(v) .  Let (iv) hold. Then there exist constants M >  0 and 61 > 0  

such that Ix(t; to, Xo)l--< Mlxo[ whenever [Xo[ < t~l and t > to-> 0. 
Let e > 0 be given and let 6 = 8 ( e ) =  rain(81, e / M ) .  Then for [Xo[ < 6 

and t >  t o - 0  we have Ix(t; to, Xo)l<-Mlxol<-<-M6<e, which shows that the 
zero solution of (4) is uniformly stable. 

( v ) ~ ( i )  From the uniform stability of the zero solution of (4) it follows 
that I[ W(t, toil-< M for t > to-> 0 (Samoilenko and Perestyuk, 1987, Theorem 
8.1). Hence (i) holds. [] 

Remark 1. We shall note that Theorem 1 still holds for any system of 
the form (1) whose fundamental matrix W does not depend on Xo. Such 
is, for instance, the linear nonhomogeneous impulsive system 

2 = A ( t ) x + h ( t ) ,  

Ax],=, k = BkX+bk 

X(to+ O) = Xo 

t ~  tk 

(see Simeonov and Bainov, 1987, p. 266). 

Theorem 2. Let conditions (A) hold and let the zero solution of (1) be 
uniformly Lipschitz stable. Then the zero solution of (1) is uniformly stable. 

Proof From the uniform Lipschitz stability of the zero solution of (1) 
it follows that there exist constants M > 0 and 61 > 0 such that Ix(t; to, Xo)l <- 
Minor for rXol < and t > t o -  O. 
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Let e > 0  and let ~ = 8 ( e ) = m i n ( 8 1 , e / M ) .  Then for [Xol<8 and 
t > to-> 0 the inequalities Ix(t; to, Xo)l <- M[xo{ < M~ < e are valid. Hence the 
zero solution of  (1) is uniformly stable. I 

Theorem 3. Let condition (B) hold and let W be the fundamental 
matrix of system (6). Moreover, let piecewise continuous functions k, h: J 
(0, oo) exist with points of  discontinuity t -- tk, k = 1, 2 , . . .  , at which they 
are continuous from the left and such that 

f ' h ( s ) l l W ( t , s ) l l d s ~ k ( t ) ,  t >  to--0, t#tk, 
0 

(I/h s' ' t, k(t)  e x p -  . ~ - ~ a s ] ~ N ,  t >  > t o ~ 0 ,  

where 0 < N = const. 

k =  1 , 2 , . . .  (9) 

t # tk (10) 

Then the zero solution of (6) is uniformly Lipschitz continuous. 

Proof. Let b(t)= 1/11 w(t, to)ll, t >  t o - 0 .  Then 

h(s)b(s)ds W(t, to) = W(t,s)W(s, to)h(s)b(s)ds 
tO t O 

Hence 

1 h(s)b(s) ds~ IIW(t, s)llh(s) ds~k( t )  (11) 
b(t) to ~'o 

where we have used (9). 
Set B(t)=I~t0 h(s)b(s)ds. Then B(t) is continuous for t -  > to->0 and 

B'(t) = h(t)b(t) for t # tk, k = 1, 2 , . . . .  Moreover, from (11) it follows that 
h(t)B(t) < - k(t)B'(t), i.e., 

B ' ( t ) > - ~ B ( t ) ,  t >  to->O, t#tk, k =  1 , 2 , . . .  (12) 

Multiply both sides of (12) by exp{-~t~. [h(s)/k(s)] ds} for some t * >  to 
and obtain 

_d 
dt B ( t ) e x p ~ - j , . - ~ d s  ~ -0 ,  t~-t*, t#tk, k=l,2, . . .  

Hence 

B( t) exp{-  ff. [h(s)/ k(s)] ds) >- B( t *) 
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from which, using (11), we obtain 

k( t)b( t) >_ B( t)>_ B( t*) exp{ f,'. [ h( s)/ k(s) ] ds} 

Then 

1 k(t) { f' h(s) as) 
Ilw(t, to)]l = ff(-~-< B(/*i  e x p , -  j , .  k-~s) 

/ 

Let M = N/B(t*). Then, applying (10), we obtain that II w(t, to)l]-< M 
for t > to -> 0, which means that the zero solution of (6) is globally uniformly 
Lipschitz stable in variations. From Theorem 1 it follows that the zero 
solution of (6) is uniformly Lipschitz stable. �9 

Corollary 1. Let conditions (A) hold and let the zero solution of (1) 
be asymptotically stable in variations. Then the zero solution of (2) is 
uniformly Lipschitz stable. 

Proof From the asymptotic stability in variations of the zero solution 
of (1) it follows that inequalities (9) and (10) of Theorem 3 hold with 
h(t)=-1, k(t)=-M, W(t, to)=aI2"(t, to), and N=M.  Then the assertion of 
Corollary 1 follows from Theorem 3. �9 

Corollary 2. Let condition (B) hold and let the fundamental matrix W 
of the linear system (6) satisfy the inequality 

f 'l[W(t,s)]]ds<-t for t >  to>-O 
O 

there exists a constant M > 0  such that ][W(t, to)]]<-M for Then 
t >  to--O. 

Theorem 4. Let conditions (A) hold and let the zero solution of (1) be 
asymptotically stable in variations. Then the zero solution of (1) is uniformly 
Lipschitz stable. 

Proof Let W be the fundamental matrix of (2). From Corollary 1 it 
follows that []~(t, to)]] -< KI for t > to-> 0, where 0 < K~ = const. From the 
condition of Theorem 4 it follows that 

I ' l ] ~ ( t , s ) l l d s < - g 2  and Y~ [[W(t, tk+O)[l<-g2 
t 0 to<~tk~:St 

for t > to--> 0, where 0 < / (2  = const. 
Let K = max(K1, K2). Since f ( t ,  0)--0 and Ik(0)= 0, k = 1, 2 , . . . ,  then 

for e < l / 2 K  there exists 6 > 0  such that f(t ,x)=fx(t,O)x+h(t,x) and 
Ik(X) = I'k(O)x + hk(X) for Ixl < where ]h(t, x)] < elx [ and [hk(X)[ < e Ix I . 
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Applying the variation of parameter formula (Simeonov and Bainov, 
1987, p. 266), we obtain 

xY~'( t, ( t  
Ix(t; to, Xo)] = to+O)xo+ @(t, s)h(s, x(s; to, Xo)) as 

d t  0 

+ E xIr(t, tk+O)hk(X(tk;to,Xo)) I 
t O < t k < t  

-< II'I'(t, to+O)[[ IXo[ II't'(t, s)[I [h(s, x(s; to, Xo))] ds 
o 

+ ~ IIxIP(t, tk+O)l] Ihk(X(tk; to,Xo))l 
t o < t k < t  

f - / I X o l +  ~ II'I'(t, s)H Ix(s; to, xo)l ds 
to 

+ e  • ibm(t, tk+O)ll [x(tk; to, Xo)l 
t o < t k < t  

<- Klxol+2eK sup Ix(s; to, Xo)l 
t o < s ~ t  

Hence 

K 
Ix(t; to, Xo)[~l_2e  K Ixol= Mlxol, t> to>-O 

This completes the proof of Theorem 4. II 

Theorem 5. Let the following conditions be fulfilled: 
1. Conditions (A) hold. 
2. g E C [ J x R + , R + ]  and g(t,O)=-O. 
3. For (t, x) e J x S(p) and for any h > 0 small enough the following 

inequality is valid: 

Ix + hf( t, x )[ <- Ix[ + hg( t, Ix[) + e( h ) (13) 

where e(h)/h->O as h->O. 
4. For x ~ S(p) and for any k = 1, 2 , . . .  the inequalities 

Ix + Ik(x)[-< ak(lxl) (14) 

are valid, where Gk: [0, 0o) ~ [0, P) and Gk e •. 
5. The zero solution of the scalar impulsive differential equation 

fi = g( t, u ), t # tk 

U( tk +0) = Gk( U( tk) ) (15) 

U(to+O) = Uo>-O 

is uniformly Lipschitz stable (globally uniformly Lipschitz stable). 
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Then the zero solution of system (1) is uniformly Lipschitz stable 
(globally uniformly Lipschitz stable). 

Proof. Let p* = min(p, Po)- From condition 5 of Theorem 5 it follows 
that there exist constants M > 0 and 8 > 0 (MS < p*) such that 

u( t ; to ,  Uo)<-Muo for 0 -  Uo< 8, t >  t o - 0  (16) 

Where u(t; to, Uo) is any solution of (15) for which U(to+0; to, Uo) = uo. 
We shall prove that ]x(t; to, Xo)l<-Mlxol for Ixol<~ and t > t o - 0 .  

Suppose that this is not true. Then there exists a solution x( t )  = x( t ;  to, Xo) 
of (1), IXo[ < 8, and t* ~ (tk, tk§ for some positive integer k such that 

Ix(t*)l> M]xo[ and  Ix(t)l<-Mlxol for to<t<-tk  

From (14) it follows that 

[x( t~ +0)[ = [x( tk) + Ik(x(  tk) )[ <-- Gg(lX( tk)[) 

<-- Gk(Mlxo]) < Gk(M8)  <- Gk(p*) <-- p 

Hence there exists t ~ tk < t o<- t*, such that 

M[xo l<]x ( t~  and [x(t)l<p, t o<t<- t  ~ (17) 

Set m ( t ) =  ix(t)[ and no= Ixol. From (13) it follows that for t~ (to, t~ 
t # tj, j = 1, 2 , . . . ,  k, the following inequalities hold: 

m'( t ) = l im(1/  h )[[x( t + h )[ - [x(t)l] 
h~O 

<-lim(1/h)[]x(t  + h)[ + hg( t, Ix(t)l)  + e( h ) - I x ( t )  + hf( t, x(t))]] 
h~0  

<- g(t, [x(t)l)§ e(h)/h + ~!m [(1/h)[x(t + h) - x ( t ) ]  - f ( t ,  x( t ) ) [  

= g(t, Ix(t)[) = g(t, m( t ) )  

From (14) we obtain that for j = 1, 2 , . . . ,  k the inequalities 

rn( tj + O) = Ix( tj + 03[ = Ix( 0 +/j(x(tj))]-< Gj(lx(OI) 
hold, hence 

Moreover, 

rn(tj+O)<-Gj(Im(tj)[), j = l , 2 , . . . , k  

re(to+O) = I X ( t o + O ) l  = [Xol = Uo 

Applying the comparison theorem (Lakshmikantham et al., 1989, 
Theorem 1.4.3), we obtain 

]x ( t ) [=m( t )<-u( t ;  to, Uo) ,  t o< t<- t  ~ (18) 
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From (16)-(18) it follows that 

M]xo[ < [x(t~ = m( t ~ <- u(t~ to, Uo) <- MUo = Mixo[ 

The contradiction obtained shows that Ix(t; to, Xo) I ~ M[xo[ for [Xo[ < 6 
and t >  to>-0. 

Theorem 5 is proved. �9 

Theorem 6. Let the following conditions be fulfilled: 
1. Conditions 1, 2, 4, and 5 of Theorem 5 hold. 
2. For (t, x) ~ J x S(p) the inequality 

[x, f ( t ,  x)]+ ----- g(t, Ixl) (19) 

is valid, where 

[ x , y ] + = l i m s u p ( 1 / h ) [ [ x + h y l - l x l ]  , x, y e R "  
h ~ O  + 

Then the zero solution of system (1) is uniformly Lipschitz stable (globally 
uniformly Lipschitz stable). 

Proof Let p* = rain(p, Po)- From condition 5 of Theorem 5 it follows 
that there exist constants M > 0 and ~ > 0 (M6 < p*) such that 

u(t; to ,  Uo)<-Muo for O-<uo<6 and t>to->O 

We shall prove that Ix(t; to, xo)l<-Mlxo[ for Ixol<~ and t > t o - 0 .  
Suppose that this is not true and as in the proof of Theorem 5 we find a 
solution x( t )  = x(t; to, x0), IXo[ < 6, of system (1) and t~ (tk, tk+l] for some 
positive integer k such that 

Mlxol<lx(t~ and [x(t)l<p, to<t<-t  ~ 

Set re(t) = Ix(t)l and Uo = Ixol and using (19) obtain that for t ~ (to, t~ t ~ tj, 
j = 1, 2 , . . . ,  k, the following inequalities hold: 

D+ rn( t) = lim sup(1/ h )[m( t + h) - re(t)] 
h~O + 

= lim sup(1/h)[Ix( t+ h ) l -  Ix(t)l] 
h~O + 

lim sup I(1/h)[x(t + h) - x(t)] - f ( t ,  x(t))l 
h~O + 

+ lim sup(1/h)[Ix(t  ) + hf(t, x(t))  I -Ix( t) l]  
h ~ O  + 

= [x( t ) , f ( t ,  x(t))]+ ----- g(t, m(t))  

Later the proof of Theorem 6 is completed as the proof of Theorem 5. �9 

Theorem 7. Let the following conditions be fulfilled: 
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1. Conditions (A) hold. 
2. The function g is continuous, nondecreasing, positive, and sub- 

multiplicative in I = (0, ~ )  and 

g(Au)--> Ix(A)g(u) for A > 0, u > 0 

where tx(A) > 0 for A > 0. 
3. For (t, x) E J • ~ the following inequality holds: 

If(t, x)j <- m( t)g(Ixj) 

where the function re(t) is continuous and nonnegative in J. 
4. For x c ~ and for any k = 1, 2 , . . .  the inequalities 

lxk(x)l  ,okl- l 
hold, where ilk, k = 1, 2 , . . . ,  are nonnegative constants. 

5. We have 

for any Xo c R" and any 0 -> to-> O, where 

G ( u ) =  u>-a>O 
g ( s ) '  

and G -1 is the inverse to G. 
6. G ( ~ )  = oo. 
Then the zero solution of system (1) is globally uniformly Lipschitz 

stable. 

Proof Since 

f, x(t; to, Xo) = xo+ f(s ,  x(s; to, Xo)) ds + • Ik(X(tk; to, Xo)) 
to tOG t k ~ t 

then, using conditions 2-4 of Theorem 7, we obtain the inequalities 

Ix(t; to, 
IXol 

f'ml(s I) ( jX(s',to, Xo)]'~ ds+ ~ flk Ix(tk;tO'xO)] 
- < 1 + 3  IXol gk[xoi iXo} ] ,o<,k<, }Xo} tO 

,o ,o<,k<, }Xo} 
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Then from the impulsive integral inequality (Lakshmikantham et al., 
1989, Theorem 1.5.5) it follows that 

[x( t; to, Xo), <- xo[G-'[ G (to<tk <t ( l + 

f '  l+flk m(s) ds ] + g(lXo[) 17 /~(1 + ilk) 
- - ~  to S<tk<2t 

From condition 5 of  Theorem 7 it follows that Ix(t; to, xo)[-< Mlxol for 
any Xo ~ ~ and for t > to-> 0. 

This completes the proof  of Theorem 7. �9 

Theorem 8. Let the following conditions be fulfilled: 
1. Conditions (A) hold. 
2. The function g is continuous, nondecreasing, positive, and submulti- 

plicative in I = (0, co). 
3. Conditions 3 and 4 of  Theorem 7 hold. 
4. For any k = l , 2 , . . . ,  te( tk ,  tk+a] , and X o ~ "  the following 

inequalities hold: 

I' ) 
where 0 < M = const, 

ds 

i u ( f , )  Gk(U) = Ck = (1 + flk)Gk-l_~ m(s) ds k = 1, 2, 
ck g(s) '  t~_l ' "'" 

I = , U ~ c ~ O  
c 

and Gk ~ is the inverse to Gk. 
5. Gk(co)=co, k = 0 , 1 , 2 , . . . .  
Then the zero solution of system (1) is globally uniformly Lipschitz 

stable. 
Proof. As in the proof  of  Theorem 7, we obtain the inequality 

Ix(t; to, Xo)l< f '  g([x01) [.Ix(s; to, Xo)l.) 
1~ol - 1 +  j , o - - - ~ m ( s ) g \  iXo[ , ds 

Ix(t~; to, ~o)1 
+ ~. tXk t> to>-O 

Applying the impulsive integral inequality (Samoilenko and Perestyuk, 
1987, Lemma 16.1), we obtain 

(g(Ixol) f' ) ]x(t;to,Xo)l<-[xo[S~'\--~J, om(S) ds, tE(tk, tk+ll, k = l , 2 , . . .  
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Then from condition 4 of Theorem 8 it follows that Ix(t; to, Xo)[ < M lxo[ for 
x o ~ "  and t >  to->0. 

Theorem 8 is proved. [] 

Theorem 9. Let conditions (A) hold and, moreover, for 0 - to-> 0 and 
]Xo[ < 8 let 

f~, A(t, to, Xo) dt<oo and 1-I Ak <oo (20) 
O<tk<CO 

where A(t, to, xo) 'is the greatest eigenvalue of the matrix 

�89 x(t; to, Xo))+ f f ( t ,  x(t; to, Xo))] 

and Ak, k =  1 , 2 , . . . ,  are the greatest eigenvalues of the matrices [ E +  
I~,(0)][E + I~(0)] ~. 

Then the zero solution of system (1) is uniformly Lipschitz stable. 

Proof From Samoilenko and Perestyuk (1987, Theorem 9.1) it follows 
that 

I- , ~ t  o 

where 

~b(t, to, Xo) =0_~ (x(t; to, Xo)), 
OXo 

is the fundamental matrix of system (3). 

t# tk ,  k = l , 2 , . . .  

Then from conditions (20) we obtain that ][~(t, to, Xo)[1 -< M for t > to->- 
0 and IXo[ < 8, which completes the proof of Theorem 9. [] 

Remark 2. In the case when in ~" the Euclidean norm ]x[ of the vectors 
x E R" is used, conditions (20) can be written down in the form 

~cr 

j tx(fk(s,x(s;to,Xo))ds<oo and l-[ IIE+Z (0)II <~ 
0 tg<tk<~ 

where 

/z(A) = lim (1/h)E[IE + hAll- 1] 
h ~ 0  + 

is Lozinskii's "logarithmic norm" of the n x n matrix A. 

Theorem 10. Let the following conditions be fulfilled: 
1. Conditions (A) hold. 
2. The zero solution of system (1) is uniformly Lipschitz stable. 
3. s, z)g(s, z)l-<  (s)lzl for t>-s> to>-O, z~R ~, where �9 is the 

fundamental matrix of (3) and the function g: J x R ~ ~ R  n satisfies condi- 
tions A2 and A3. 
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4. IP~(y)I ~ ~ ly l  for y e R", k = 1, 2 , . . . ,  where Pk: R" ~ R ~ satisfy con- 
dition A4 and/3k - 0, k = 1, 2 , . . . ,  are constants. 

5. II~(t, tk, y+Ik(y)+SPk(y)ll<--O~k for t >  t0-->0, y ~ R ' ,  0--<s--<l, and 
k = 1, 2 , . . . ,  where ak --> 0, k = 1, 2,. : . ,  are constants. 

co 
6. ~o Y(O dt<eo and I~o<tk<oo(l+Otkflk)<O0 for 0 >  to -0 .  
Then the zero solution of the perturbed impulsive system 

f ;= f ( t , y )+g( t , y ) ,  t #  tk 
(21) 

AyI,=,~ = Ik(y) + Pk(Y) 

is uniformly Lipschitz stable. 

Proof. Using Alexeyev's variation of parameter nonlinear formula for 
impulsive differential equations (Simeonov and Bainov, 1987, p. 268), for 
the solution y ( t )=y ( t ;  to, Xo) of (21) we obtain 

f'or t, y(t; to, Xo)=X(t; to, Xo)+ s ,y(s))g(s ,y(s))  ds 

+ ~'. ~(t ,  tk, y(tk)+Ik(y(tk) ) 
t o ' < t k ~ t  

+ SPk(y(tk))) ds" Pk(y(tk)) (22) 

From condition 2 of Theorem 10 it follows that there exist constants 
a > 0 and 6 > 0 such that 

I (t;to,Xo)l-<, l ol for t> to-O and 1 o1<8 (23) 

From conditions 3-5 of Theorem 10 and from (22) and (23) it follows 
that 

f 
t 

lY(t)]:lY(t; to, xo)l~lxol+ 7(s)ly(s) ] ds+ Z ~kly(tk)[ 
t o t o < t k < t 

from which, using the impulsive integral inequality (Samoilenko and 
Perestyuk, 1987, Lemma 2.1), we obtain 

rr ] ly(t;to, Xol - lxol II (l+akClk) exp y(s) ds 
,tO< t k < t L d t  0 

Then from condition 6 of Theorem 10 it follows that ly(t; to, x0)l-< alXo[ 
for IXol < ~ and t > t0-> 0. 

Theorem 10 is proved. I 

Corollary 3. Let the following conditions be fulfilled: 
1. Condition (B) holds. 
2. The zero solution of system (6) is uniformly Lipschitz stable. 
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3. The function g: J x •" --> •" satisfies conditions A2 and A3 and 

[g(t,y)l<-3,(t)[yl for y~R" ,  t > t o > - 0  

o o  

where So y ( s )  d s < o o  for 0 >  t o - 0 .  
4, The functions Pk: g~" ~ ~n satisfy condition A4 and IPk(y)[-< ~klYl, 

where 0-<-/3k = const and I-J0 <,k <co (1 + aflk) < co for 0 > to-> 0 and a > 0. 
Then the zero solution of  the system 

f ~ = A ( t ) y + g ( t , y ) ,  t # t k  

Aylt=, k = Bky + Pk(Y) 

is uniformly Lipschitz stable. 
In the subsequent theorems some relations among the notions of 

Lipschitz stability introduced by Definition 1 are considered. 

Theorem 11. Let conditions (A) hold and let the zero solution of 
system (1) be uniformly Lipschitz stable in variations. Then the zero solution 
of  (1) is uniformly Lipschitz stable. 

Proof  From Lakshmikantham et aL (1989, Theorem 2.4.1) it follows 
that for t ~ tk, k = 1, 2 , . . . ,  we have 

0 
- -  x (  t; to, SXo) = dp( t, to, Xo)Xo (24) 
Os 

where �9 is the fundamental matrix of system (3). 
Integrating (24) from 0 to 1, we obtain 

[fo ] x ( t ; t o , X o ) =  dP(t, to, SXo) ds Xo, t>to-->0, t ~ t k ,  k = l , 2 , . . .  

From the condition of  Theorem 11 it follows that there exist constants 
M > 0 and 6 > 0 such that 

Ildg(t, to,Yo)H<-M for lyol<6 and t>to->-0 

and since Isxol = SlXo[ <-Ixol, then for t > to >- O, t ~ tk, k = 1, 2 , . . . ,  and Ixo[ < 6 
we have Hqb(t, to, SXo)tl <- M. 

Hence 

Ifo ] Ix(t; to, Xo)l <-- IIr to, SXo)H ds Ixol-< Mlxol 

for t >  to>-0, t r  tk, k =  1 , 2 , . . .  , and IXo[< 6. 
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From the continuity from the left of x(t; to, Xo) at the points tk, k = 
1 , 2 , . . . ,  it follows that Ix(tk;to, Xo)]<M]xo[, k = 1 , 2 , . . . ,  with which 
Theorem 11 is proved. �9 

Theorem 12. Let conditions (A) hold and let the zero solution of (1) 
be uniformly Lipschitz stable. Then the zero solution of (2) is uniformly 
Lipschitz stable. 

Proof Since the zero solution of (1) is uniformly Lipschitz stable, then 
there exist constants M > 0 and 6 > 0 such that [x(t; to, Xo)l <- Mlxo] for 
t > t o -  0 and Ixol < 6. 

Let Xo=(Xol,. . . ,Xoj-l ,Xoj,  Xo~+l,...,Xo,), j =  1 , 2 , . . . ,  n, and [Xol<- 
h < 6. Since x(t;  to, 0) = 0 for t > to >- O, t ~ tk, k = 1, 2 , . . . ,  we have 

JO~oj(X(t;to, O))J =}l im(1/h)[x(t; to,  Xo)-X(t; to,  O)][ 

-<lim Mlxol/ h <_ M 
h~O 

Hence 

II~(t, to)l[ - [[~,(t, to, 0) l l  = (x(t; to, Xo)) <-- M 

for t > to > O, t ~ tk, k = 1, 2 , . . . .  From the continuity from the left of V(t, to) 
at the points tk, k = 1, 2 , . . . ,  it follows that I[~(tk, to)[[ < M, k = 1, 2 , . . . .  

Hence the zero solution of (2) is uniformly stable (Samoilenko and 
Perestyuk, 1987, Theorem 8.1). From Theorem 1 it follows that the zero 
solution of (2) is uniformly Lipschitz stable. �9 

Theorem 13. Let the following conditions hold: 
1. Conditions (A) are satisfied. 
2. The zero solution of (2) is uniformly Lipschitz stable. 
3. For 0 > t o > 0  and ]Xo]<6 ( 6 > 0 )  

f ~  [If~(s, x(s; to, Xo)) -f~(s,  O)ll ds < ~ (25) 
o 

11 (l+KllI 'k(x(tk; to, Xo))-I'k(O)ll)<~, g > o  (26) 
O.<tk <OO 

Then the zero solution of (1) is uniformly Lipschitz stable in variations. 

Proof Let z ( t )=z ( t ;  to, Zo) be a solution of system (3) for which 
Z(to+0) = Zo. Then system (3) can be written down in the form 

~=f~(t ,O)z+[f~(t ,x(t;  to, Xo))-f~(t,O)]z, t #  tk 
t .]_ t Azlt=t k = Ik(O)z [Ik(X(tk; to, Xo)) -- I~,(O)]z 

Z( to + O) = Zo 
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From the variation of  parameters formula for impulsive differential 
equations (Simeonov and Bainov, 1987, p. 266) we obtain 

z( t; to, Zo) = q,(t,  to + O )zo 

f, + "I)'(t, s)[fx(s, X(S; to, Xo)) --fx(s, 0)]Z(S; to, Zo) as 
tO 

+ • ~( t ,  tk+O)[I'k(X(tk; to, Xo))--I'k(O)]Z(tk; to, Zo) (27) 
tO'~S tk "( 8 

From condition 2 of  Theorem 13 and from Theorem 1 it follows that there 
exists a constant K > 0 such that 

H~(t, to)[[<-K for t > to->0 (28) 

From (27) and (28) it follows that 

[z(t; to, Zo)l 
I' 

--< Klzo[ + K lif~(s, x(s; to, Xo)) - f~(s,  0)] I [z(s; to, Zo)[ ds 
g0 

+ K  E ]]I'~(x(tk; to, Xo))-I'~(O)[[ [z(tk; to, Zo)] 
t O < t k ' ~ t  

Applying the impulsive integral inequality (Samoilenko and Perestyuk, 
1987, Lemma 2.1), we obtain 

Iz(t; to, Zol 
<- Klzol ]-I [a + KllI'k(X(tk; to, Xo))-- I'k(O)ll 

t o < t k < t  

Then from conditions (25) and (26) it follows that [z(t; to, zol-< MIzol 
for t >  to>-O. 

Hence 

l ie(t ,  to, Xo)li = sup [*(t, to, Xo)Zol = sup Iz(t; to, Zo)l-- sup M [ z o l -  < M 
t~o1-~ 1 I~o1-~ 1 I~o1-~ 1 

Consequently, the zero solution of system (1) is uniformly Lipschitz 
stable in variations. II 

From Theorems 12 and 13 we obtain the following corollary. 

Corollary 4. Let conditions 1 and 3 of  Theorem 13 hold and let the 
zero solution of  system (1) be uniformly Lipschitz stable. Then the zero 
solution of  (1) is uniformly Lipschitz stable in variations. 
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From Theorems 11 and 13 we obtain the following corollary. 

Corollary 5. If the conditions of Theorem 13 hold, then the zero solution 
of system (1) is uniformly Lipschitz stable. 

4. EXAMPLES 

We shall illustrate the results obtained by some examples. 

Example 1. Consider the linear impulsive system 

Yc=Ax, t~tk; Axlt=tk=Bkx; X(to+O)=Xo (29) 

where A and Bk, k = 1, 2 , . . . ,  are constant n • n matrices. By straightforward 
calculations we establish that Ix, Ax]+ <-/.t(A)tx I. 

Let lIE + Bkll <- dk, k = 1, 2 , . . . ,  and let condition A1 hold. Consider 
the scalar impulsive differential equation 

t~=/~(A)u, t~tk;  Ault=,k=(dk-1)u; u(to+O)=uo~--O (30) 

whose solution is 

u(t; to, Uo) = UO(to<~< tdk) exp[~(A)(t-to)] 

o ~  

If we suppose that l]k=l dk is convergent and/~(A)-<0, then the zero 
solution of (30) is globally uniformly Lipschitz stable. Then from Theorem 
6 it follows that the zero solution of system (29) is globally Lipschitz stable. 

Example 2. Consider the linear impulsive system (6) for which condi- 
tions A1 and (B) hold. If, moreover, the following conditions hold: 

(a) l imsup[f t t . t (A(s) )ds]<~ 
t - ~  L Jto 

(b) IIE+Bkll<--dk, k=L2,... 

(c) H dk<~c 
k = l  

then the zero solution of the scalar impulsive differential equation 

ft=tz(A(t))u, t•tk; Ault=,k=(dk-1)u; U(to+O)=uo>--O 

is globally uniformly Lipschitz stable. Then from Theorem 6 it follows that 
the zero solution of system (6) is globally uniformly Lipschitz stable. 

Example 3. Consider the impulsive system of differential equations (1). 
Let conditions (A) hold as well as the following conditions: 
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(a) [x, f(t, x)]+ <-p(t)F(Ix [) for (t, x) c J x S(p), where p ~ C[R+, @+] 
and F ~ Y( (R+ = [0, co)). 

(b) [x+Ik(x)]<- Gk(lx[) for x c  S(p), k =  1, 2 , . . . ,  where Gk: [0, po)-~ 
[0, p) and Gk~Y(, k = l , 2 , . . . .  

(c) For any o-c (0, Po] the following inequality holds: 

, p(s) ds+ F(s) -<0" k= 1,2, . . .  

Then the zero solution of the scalar impulsive differential equation 

f~=p(t)F(u), tC-tk; AUlt=t~=Gk(U(tk))--U(tk); U(to+O)=Uo>--O 

is uniformly Lipschitz stable. From Theorem 6 it follows that the zero 
solution of system (1) is uniformly Lipschitz stable. 

Example 4. Consider the impulsive system 

2 = y ,  ) ) = - x  2"+1, t~ tk ;  Ax[,=,~=akx; Aylt=,~=aky (31) 

where n - 1 is an integer and 1-I k~l (1 + ak) < OO. The solution (x(t; to, Xo, Yo), 
y(t; to, Xo, Yo)) of system (31) satisfies the relation 

x2"+:/(n+l)+Y2=[x2"+Z/(n+l)+Y 2] II ( l + a k )  2 
t o < t k < t  

Hence the zero solution of system (31) is uniformly stable. 
Consider the variational system of (31) corresponding to its zero 

solution: 

fi = v, 15 =0, t #  tk; AU[,=,~= aku; AV[,=, k =akV (32) 

whose solution is 

u( t ; t~176176  ~ ( l+ak)]  [u~176176 
L I 0 tk <S t 

v(t;to, Uo, Vo)=Vo ~ ( l + a k )  
t O < t k ~ t  

Hence the zero solution of system (32) is unstable. From Theorem 12 
it follows that the zero solution of (31) is not uniformly Lipschitz stable. 

Example 5. Consider the impulsive system 

2= n(t)y+m(t)x(x2+y2), t~  tk 

f~=--n(t)x+m(t)y(x2+y2), t~  tk 

Ax],=, k = OtkX, Ayl,=, k = aky (33) 

where the functions m, n: ~+--> N are piecewise continuous with points of 
discontinuity of the first kind tk at which they are continuous from the left. 
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c o  

A straightforward verification yields that if m ( t ) >  0, S0 m ( t ) d t  = oo, 
t k - - t k _ l > - - O > O ( k = l , 2 ,  . ) a n d M  ~ ( l + a k ) < O o ,  then the zero solution 

" "  k = l  

of  system (33) is unstable. 
Consider  the variational system of (33) corresponding to its zero 

solution: 

a = n( t )v ,  ~ = - n ( t ) u ,  t ~ tk 

Aul,=, k = o~ku, Avl,~, k = C~kV (34) 

It is clear that 

where 

p ( t ; t o ,  Po)=Po l-I (l+C~k) 
to<tk<t 

p(  t; to, Po) = U2( t; to, Uo, Vo) + V2( t; to, Uo, Vo), p g :  u2o + Vg 

Hence the zero solution of  system (34) is uniformly Lipschitz stable. 
This shows that Theorem 12 is not invertible. 
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